
Applied biomorphics in hydra

HYDRA is an innovative network security platform from Sentinel Security Corporation. HYDRA uses a patented system 
of biomorphic mathematics to provides a level of security which no traditional system can match. This paper will demys-
tify the math behind this powerful technology, as well as describe HYDRA’s implementation and applications of the algo-
rithms, such as session ID protection, software diversity, Web content checking, and more.     

Eric Ridvan Üner



History of Chaotic Dynamics
Biomorphics is a subset of a larger field of study called 
“Chaotic Dynamics.” Credit for beginning the study of 
chaotic dynamics is often given to French physicist Henri 
Poincaré, who published the first glimpses into the sci-
ence in the late 1800’s. A surge of discoveries by physi-
cists around the world in the early 1970’s has fueled the 
widespread interest in fractals, strange attractors, and 
chaos theory in general. At least 2,000 books are currently 
published on the subject, and applications of the math 
have propagated from the Graphic Arts (where the fractal 
has become a design cliche) to Meteorology, and even 
many military applications too sensitive to discuss in this 
document.

The most popular of the applications, Fractal Geometry, is 
now familiar to most people. The images, such as the 
Maldelbrot set shown above, seem to resemble the growth 
or movement of a living creature, or some other natural 
phenomenon related to life. This resemblance led scien-
tists to invent the description “biomorphic mathematics,” 
which expands on the word “biomorphics,” which de-
scribes the art and science of making artificial creations 
resemble natural ones. 

Chaos In A Nutshell
Aside from the aesthetic aspects, the jury is still out on a 
concrete definition for chaos or what it means for a sys-
tem to be chaotic. I myself have been involved in more 
than one very fueled debate on the subject. Having said 
that, the most popular definition is one given by the afore 
mentioned Henri Poincaré:

“It may happen that small differences in the initial condi-
tions produce very great ones in the final phenomena. A 
small error in the former will produce an enormous error 
in the latter. Prediction becomes impossible.”
 

This is to say that systems, equations, or algorithms 
which produce large changes in output from small 
changes in input are, by definition, chaotic. By now, you 
are considering all the elements of your life that are cha-
otic - traffic to work, random computer crashes, mood 
swings (someone else’s of course). True chaos, however, 
requires a mathematical proof to determine its status as a 

chaotic system.

All About Entropy
Part of that mathematical proof involves a concept known 
as “entropy.” Entropy is the measure of the disorder or 
randomness in a system. The more entropy a system has, 
the more difficult it is to predict, or more to the point, to 
backward calculate the initial input.

By way of example, consider the difference in entropy 
between your PIN for your bank card and your password 
on your computer. The automated bank machines typi-
cally only allow a four digit number. A four digit PIN has 
10,000 possible values, while a seven character password 
can have nearly 27 million possible values. The password, 
however, may not actually have any more entropy. It’s not  
the complexity of the result we are interested in when 
talking about entropy, but the randomness that went into 
generating the result.

In choosing a password, many users will choose a dic-
tionary word, or some modified version of an aspect of 
their personal life. For example, I might chose a simple 
combination of my favorite number, and the name of my 
amazingly beautiful and fabulous wife. The result could 
be something like:

fT (”Linda”,”5”) = ”L1nd405”

Given that I can only easily remember a few hundred per-
sonal facts and figures without some kind of reminder to 
form such a password, a randomly assigned four digit 
PIN with 10,000 options may actually have more entropy 
than this weak password. That would depend greatly, 
however, on the algorithm used to select my PIN.

Pseudo-Random Numbers
To get a random number out of a computer, you need to 
simulate a random process. This is because computers are 
deterministic machines. Given the same inputs under the 
same conditions, they will always produce the same asso-
ciated outputs. The most popular way of simulating ran-
domness is to use an algorithm that is complex enough to 
resist basic analysis. However, because these algorithms 
are still deterministic, they only appear to be random, and 
so the results are called “pseudo-random.” 

One common source of pseudo- randomness is a numeri-
cal approximation of the value of π. Because one digit has 
little discernible relationship to the next digit, the se-
quence appears random. There is no shortage of tech-
niques to get the values. One popular method is to use a 
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formula from John Machin, a professor of Astronomy at 
Gresham College, London back in the early 1700’s:
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To approximate the arctangent, we can use the well-
known Taylor series:
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Obviously this is a hefty task for a even a powerful com-
puter. Even using more efficient approximations, it can 
take an average PC several minutes to calculate 250,000 
PINs. That doesn’t sound too bad for a bank, but keep in 
mind that pseudo-random numbers form the basis for 
cryptographic seeds used for algorithms that provide se-
curity in the form of ciphers (e.g. those used by your Web 
browser for SSL), digital signatures, and more. So for a 
system like a Web server that might need thousands of 
such numbers a second, these calculations become a 
processing bottleneck. 

To make it worse, certain systems may have requirements 
for even more complex algorithms. Some U.S. Federal 
government systems, for example, must adhere to the 
Federal Information Processing Standard (FIPS). FIPS 
requires algorithms so computationally expensive that an 
entire market of specialized co-processors sprung up to 
offload the calculations from a system’s main processor.

True Randomness Can Be 
False Security
Given the disadvantages intense computing requirements 
and predictability of pseudo-random number generation, 
many cryptographic applications have turned to sources 
of true random data, such as radioactive noise from space 
or small temperature variations inside microchips. This 
solution, however, is plagued by two shortcomings:

1. Since the data is non-deterministic (meaning you can 
not repeat a test and get the same results twice) you 
can not prove the system’s entropy mathematically. 
One run may be very random, and the next very pre-
dictable.

2. The source of entropy can often be manipulated.

Manipulation of the data or the source of entropy is often 
the killing blow. Implementers have always looked, with-
out success, for a source of random data that could not be 
manipulated - with some creative attempts.

An Interesting Anecdote: Lava Lamp vs. The World
In 1996 a rather creative individual discovered 
that by coupling a digital imaging system to a 
lava lamp, he could generate true random num-
bers.  I took the concept to the next level, intro-
ducing a system later that year that used satel-
lite imaging of the clouds over the Western 
Hemisphere, producing even more random 
data, albeit not on clear days. My system 
never caught on, probably because it’s not 
nearly as funny.

Neither system provided a true solution. My 
satellite data, for example, can be forged. Along 
a similar vein, one distribution of Linux used the time 
between the arrival of network packets as a  source of 
randomness. This solution was short-lived, as hackers 
discovered they could manipulate the timing by flooding 
the server with network traffic. Cyber-thieves calculated 
values of the resulting “random” data, potentially allow-
ing them to steal network sessions and decipher encrypted 
messages with ease.

Biomorphic Sets
We have seen that hardware pseudo-random number gen-
erators are often impractical or inadequate, and software 
based solutions are often ineffective or computationally 
expensive; so is there a solution? Enter biomorphic 
mathematics.

In his book “Fractal Geometry of Nature” published in 
1982, Benoit B. Mandelbrot suggests that the answer to 
nature may lie in mathematics. Mandelbrot introduced a 
simple equation:

z = z
2 + c

The equation, when combined with an iterative algorithm 
(meaning an equation that depends on feedback into it-
self), produces the familiar fractal images now known as 
the Mandlebrot set. Shortly before Mandlebrot’s discover-
ies, a Meteorologist by the name of Edward Lorenz began 
using computers to predict the weather. Lorenz found that 
very small truncation or rounding errors in his algorithms 
produced large changes in the resulting predictions. This 
led to the study of “strange” or chaotic attractors. A Lo-
renz system can be described as:

x1 = δ(x2 − x1)

x2 = rx1 − x2 − x1x3

x3 = x1x2 − bx3
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Where δ is a constant. The system exhibits chaotic behav-
ior under the following conditions:

r ≤
δ(δ + b + 3)

δ − b − 1

Sentinel Security has now discovered that using these 
techniques, combined with a simple algorithm, it is possi-
ble to model a biomorphic set that exhibits chaotic behav-
ior similar to biological growth models. In fact, as shown 
below, when modeled in a three dimensional rendering 
software package, the data resembles a blob of amor-
phous matter reminiscent of movement or growth models 
associated with cellular automata.

 

Modeling Randomness
The exact parameters for modeling the specific biomor-
phic set used by HYDRA are a trade secret (not for rea-
sons of security, but rather to protect the intellectual prop-
erty). The modeling process, however, is fairly straight 
forward.

The first step is to create a set using a simple geometric 
progression of the form:

xnynzn = δ(xn−1yn−1zn−1 + i)

Where δ is a constant derived from a hash against system 
parameters such as hardware and software serial numbers. 
The algorithm to draw this set is similar to that used in 
creating fractal images, where individual values are fed 
back into the equation, and used in determining subse-
quent values. 

Once the set is defined, the parameters are now used to 
create a series of orbits around and within the set. To gen-
erate the random numbers, called “bodacions,” the algo-
rithm simply tracks the orbits, delivering a representation 
of the x, y, and z coordinates in the form of a string of 
characters. Much of the computation is front-loaded, and 

subsequent requests for bodacions require very little 
computation.

Bodacions have three very unique properties:
1. Bodacions are nearly impossible to guess or calculate 

without the seed, orbit, and reference to position 
along the orbit. That reference positions itself 
changes chaotically. The smallest bodacion consists 
of 320 bits of entropy, with larger hashes or combina-
tions of bodacions producing even more entropy.

2. Bodacions have almost no correlation to each other. 
As shown below by the test results from various tests 
against random or pseudo-random numbers, boda-
cions exhibit near true-randomness with determinis-
tic, provable results.

Test HW generated Bodacions Optimal Result

Entropy 0.999318 1.000000 1.000000

X2 0.01 50.00 25.00-75.00

Arithmetic 
Mean

0.4846 0.5002 0.5000

Monte Carlo 
Error

10.80% 0.13% 0.00%

Correlation 
Coefficient

0.149488 0.000372 0.000000

3. Bodacions never repeat until all possible values are 
delivered. In a typical set size of 2256, the system 
could generate thirty-two bodacion per second and 
never repeat a value for close to one thousand years. 

An astute reader would point out that this characteris-
tic may reduce the security of bodacions. Think of a 
group of people guessing a number between one and 
ten. The first guess has a 1/10 chance of being cor-
rect. However, if you were privy to the first guess, 
and you are the second guesser, your odds improve to 
1/9. The odds improve in that way until after ten 
guesses, you have a 1/1 chance (i.e. you know the 
answer without guessing). 

Since bodacions are shared among disparate subsys-
tems and connections, however, all parties are not 
privy to all previous bodacions, reducing the odds of 
a correct guess. Furthermore, a well-designed hash on 
a bodacion can turn it into a random number with a 
varying probability of repeating a value, while still 
maintaining the chaotic characteristics.

Full details are available in the rather lengthy patent 
number 20020064279, which may be found at 
www.uspto.gov. 
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HYDRAs Applications
Since bodacions fulfill the entropy and computational 
needs of a system like HYDRA, the HYDRA server 
makes extensive use of the numbers throughout every 
subsystem.

Diversity
The primary use for bodacions in HYDRA is to create 
diversity at the process, subsystem, and device level. By 
making each element different from another, HYDRA 
enhances its security posture. HYDRA achieves the di-
versity by maximizing the divergences while making the 
path of divergences difficult to predict using chaotic algo-
rithms.

To understand why this is so powerful, we again turn to 
nature. In a behavior known as Evolutionary Psychology, 
living organisms prefer to reproduce under the maximum 
heterozygosity, or put another way, under situations 
where two sets of compatible genes have the most differ-
ences. Opposites really do attract.

A famous case where this went horribly wrong is the 
cheetah. Some time ago, all species of cheetah expect the 
one we know today became extinct.  The remaining spe-
cies was forced to inbreed due to their small numbers, and 
this in turn has produced a situation where any one chee-
tah is nearly 99% the same as all other cheetah, compared 
with less than 80% similarity among different humans.

The difficulty for cheetahs is that in the event of a deadly 
virus targeting cheetahs, it is likely that the entire species 
would be wiped out. Bear with me, but this is exactly the 
problem behind the reason Internet worms and viruses 
spread so quickly. With millions of computers running 
identical software all connected to each other, a hacker 
need only create one virus and it can spread to all similar 
systems.

If those systems had diversity, the virus would be limited 
to only those systems sharing common memory layouts 
and configurations. HYDRA uses its ability to create di-
versity among its subsystems and sets of devices to pre-
vent this very situation. If a hacker with the resources to 
crack a password or exploit any kind of vulnerability in 
their HYDRA tries to use the same attack on another 

HYDRA, it is extremely unlikely the attack would suc-
ceed.

TCP Initial Sequence Numbers
Another way HYDRA uses biomorphics is in the creation 
of TCP Initial Sequence Numbers (ISNs). The ability to 
predict TCP sequence numbers can allow a malicious user 
to gain access to a system by masquerading as a legiti-
mate host. This untrusted system can receive all of the 
system privileges that were afforded to the spoofed sys-
tem. A malicious user could gain access to files, data-
bases, and system information. The security of the system 
and other remote systems could be placed in jeopardy. 

To thwart this attack, HYDRA uses bodacions to create 
TCP initial sequence numbers. HYDRA must create these 
sequence numbers upon each new network connection, 
which speaks to the low computational power required to 
create a bodacion.
  
Web Content Verification
Malicious modification of Web content has been known 
to result in tremendous damages. Hackers have success-
fully launched so-called “subversion of information” at-
tacks to modify financial records, change the cost of re-
tails items, and even to post false news stories from repu-
table sources regarding important political officers as 
high as the President of the United States.

To prevent these attacks, HYDRA creates a signature on 
each file, be it XML, SOAP, HTML or any other content 
delivered via HTTP. The signature is based on a simple 
chaotic function and tainted, or combined, with a boda-
cion. HYDRA’s Web server then checks the resulting sig-
nature against a recalculation before delivering any Web 
content.   

SSL/TLS
HYDRA also uses bodacions to secure Web content de-
livered over SSL/TLS. Web browsers (e.g. Safari, 
Netscape, Internet Explorer) and Web servers (e.g. 
HYDRA, Apache, IIS) use the Secure Sockets Layer (or 
SSL) protocol to encrypt information in transit between 
the browser and server. TLS makes some subtle, but im-
portant changes from SSL, and has a different name as 
proof that eight people in one room have eight opinions 
on what anything should be named.

Bodacions provide the source for cryptographic key mate-
rial for use in standard ciphers like Triple DES, AES, and 
RC4, as illustrated below.
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Note that HYDRA uses FIPS approved implementations 
of Triple DES and SHA-1, so when operating in FIPS 
mode, bodacions are first hashed to create a FIPS compli-
ant PRNG. Mathematical analysis shows the incorpora-
tion of SHA-1 to actually increase correlation (lower en-
tropy), however the impact on the resulting key material 
is negligible.

HYDRA employs techniques similar to those used to cre-
ate key material and verifying content in dozens of addi-
tional subsystems and functions, including:
• General Random Number generation
• SSL Session ID’s
• TCP Initial Sequence Numbers
• One-way Password Hashing
• Disk Cache Verification
• Buffer Overrun Protection (Canary Values)
• IP ID’s
• X.509 Certificate Ciphering
• In-RAM Protection by Scramble Ciphers
• HTTP Virtual Server Lookups
• User and Group ID assignment
• Enabler Codes and Serial Number Generation

External Availability
Outside of HYDRA’s internal systems, remote applica-
tions may obtain bodacions via a simple protocol. Given 
the unique properties of bodacions, applications may use 
them for session ID’s, transaction numbers, and for count-
less other values that benefit from unique, difficult to 
guess numbers or characters.

Database Performance Boost
Many database applications require unique values to al-
low for searching of a row set of data by a single column 
value. For example, banks typically give each financial 
transaction a unique ID. These ID’s should be difficult to 
guess, so that unauthorized users can not easily locate 
transactions. 

In this case, the system must query the database for each 
transaction ID before inserting that ID to avoid dupli-

cates. Database implementations almost always include a 
feature called “unique constraint” that can perform this 
operation for the application, albeit at significant cost. 
Using bodacions (which are always unique) as ID’s al-
lows the developer to remove the unique constraint on the 
column ID, which (as shown below) can dramatically 
improve database performance. 

SQL Database

Sorted Text File

SQL Database

w/o Constraint

log(t) secs

This graph shows the result of inserting ten million boda-
cions into first a Sybase database running on an IBM 
UNIX server, next into a sorted flat file, and finally 
Sybase again with the unique constraint turned off. The 
uniqueness of bodacions, in this example, accelerates da-
tabase performance one hundred fold.  

URL Protection
Information on the Internet is addressed primarily with a 
Uniform Resource Locator, or URL, such as the one be-
low. 

http://example.com/?item=Toy+Car&price=12.99

A URL consists of an access protocol (http), a domain 
name (example.com) and many other optional components, 
including parameters passed to application in the form 
name=value.

Applications can use keyed bodacions (a bodacion made 
from a string of data rather than the default set) to insure 
a user has not modified privileged components of a URL. 
For example, consider the above example URL that in-
cludes an item name (Toy Car) and a price ($12.99).

If the user modified this URL by changing the price, the 
server would have no way of knowing this without look-
ing up the price again. To save that step, the system can 
create a identifier made from the item number and price.

Each time the user returns to the site, the server could 
recalculate the ID or look it up in a table. If the ID 
matches what the one in the user’s URL, the elements 
involved in making the ID have not been modified. In this 
use, bodacions resemble an efficient hash or digital signa-
ture, depending on the details of their use.
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http://example.com/?item=Toy+Car&price=12.99&session=1234

Toy Car

12.99

f(x)
 

1234

http://example.com/?item=Toy+Car&price=4.99&session=1234

Toy Car

4.99

f(x)
 

4321

No Match!

!

Session Protection
You might have noticed that the ID in the example URL 
above was named “session”. This leads us to yet another 
important application of bodacions: session ID’s.

The Internet operates primarily on a connectionless pro-
tocol. That is to say that, unlike a telephone conversation 
where two parties are directly connected, downloading a 
typical Web page requires multiple connections, and sub-
sequent pages require new connections. Web servers have 
no way to associate multiple requests with a single user, 
and so server applications often employ a unique session 
ID which the two parties in the conversation must ex-
change upon each discrete connection. 

Systems that need to create session ID’s face numerous, 
significant challenges. These challenges can differ from 
system to system, and vary from CPU usage requirements 
in busy or slow systems to session locking to security is-
sues. The majority of systems, however, share two com-
mon issues: guaranteeing that session ID’s are unique, 
and that session ID’s are secure from hackers guessing the 
ID’s of other sessions.

Difficulty In Guaranteeing Uniqueness
For a session ID to be effective in linking discrete sec-
tions of a dialog in a connectionless system, the session 
ID for each dialog must be unique among all dialogs. For 
example, say a particular server assigns session ID’s 
based on the time in seconds since the system began op-
eration. If two users accessed the system within the same 
second, the server would think that these two users are 
actually the same user.

Similarly, say a system uses the user’s last name and first 
three digits of their social security number to assign a 
customer ID. To this system, John Smith, born in Chi-
cago, IL and Jenny Smith, born in Schaumburg, IL, may 

both receive the same customer ID of Smith321. The sys-
tem now has no way to distinguish Jenny from John.

Depending on the complexity of the system and its user 
base, it can be difficult, if not impossible, to make a 
unique key from user data elements alone.

The guessing of session ID’s by computer bandits is one 
of the most prolific methods used to break into systems. 
Session ID’s created by even complex algorithms are of-
ten simple to guess, and once a hacker has a session ID, 
they can assume any identity. Hackers frequently look for 
typical session generation techniques such as:

• Sequential Session Keys
Some sites use a sequence to create ID’s. For example, 
a system may create sessions for different users of the 
form A1, B2, C3...etc. All a hacker has to do is get one 
valid session, say E5, and then wait to assume the iden-
tity of the next person who comes to the site, who’s ses-
sion will be F6.

• Random Session Numbers
Many systems use a pseudo-random number generator, 
such as those built in to the microprocessor, to produce 
session ID’s. As explained previously, these techniques 
often provide very little randomness, and are easily ex-
ploited.

Bodacions, in contrast, are both difficult to guess or back-
calculate, and provide hackers near zero correlation (re-
call the numerical results given above).

Results Analysis
The most dramatic proof of bodacions as session ID’s or 
random numbers versus other methods comes from dia-
grams produced by phase space analysis. Sorry, but it’s 
time for just a little more math.

Since session ID’s (and indeed nearly all random data 
used in HYDRA) are single dimensional in nature, an 
algorithm to map these linear data into three dimensional 
space is employed to create a more visually concise rep-
resentation. For the purposes of plotting bodacions, a 
technique called the method of delays is used to recon-
struct a phase space. The method simply maps each suc-
cessive value of a series into x, y, and z coordinates.

x = f(g(tn−1), g(tn))

y = f(g(tn−2), g(tn−1))

z = f(g(tn−3), g(tn−2))

Applied Biomorphics in HYDRA

6/7



The following figure shows plots rendered using data 
generated with the method of delays. The shape on the 
left represents session ID’s generated from a Java applica-
tion that uses the default ID’s from the application server 
connector. The shape on the right represents session ID’s 
from the same application using bodacions. 

The reader can clearly see that the so-called “random” 
session ID’s from the Java application server (left) pro-
duce a clear pattern, while the bodacions (right) do not.

           HW-based RNG                        Bodacions

In Closing
Bodacions made from HYDRA’s implementation of cha-
otic, biomorphics sets have powerful applications in in-
ternal security, cryptography, and Web systems from the 
application layer and down.

For more information about HYDRA, please visit Senti-
nel Security Corporation online at 
http://www.sentinelsecurity.us. You can also send an 
email directly to me via http://tinyurl.com/k4288 with 
comments, suggestions, and questions, though please 
keep in mind I may not be able to respond directly to 
every message.
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