
Applied biomorphics in hydra

HYDRA is an innovative network security platform from Sentinel Security Corporation. HYDRA uses a patented system
of biomorphic mathematics to provides a level of security which no traditional system can match. This paper will demys-
tify the math behind this powerful technology, as well as describe HYDRA’s implementation and applications of the algo-
rithms, such as session ID protection, software diversity, Web content checking, and more.

Eric Ridvan Üner

History of Chaotic Dynamics
Biomorphics is a subset of a larger field of study called
“Chaotic Dynamics.” Credit for beginning the study of
chaotic dynamics is often given to French physicist Henri
Poincaré, who published the first glimpses into the sci-
ence in the late 1800’s. A surge of discoveries by physi-
cists around the world in the early 1970’s has fueled the
widespread interest in fractals, strange attractors, and
chaos theory in general. At least 2,000 books are currently
published on the subject, and applications of the math
have propagated from the Graphic Arts (where the fractal
has become a design cliche) to Meteorology, and even
many military applications too sensitive to discuss in this
document.

The most popular of the applications, Fractal Geometry, is
now familiar to most people. The images, such as the
Maldelbrot set shown above, seem to resemble the growth
or movement of a living creature, or some other natural
phenomenon related to life. This resemblance led scien-
tists to invent the description “biomorphic mathematics,”
which expands on the word “biomorphics,” which de-
scribes the art and science of making artificial creations
resemble natural ones.

Chaos In A Nutshell
Aside from the aesthetic aspects, the jury is still out on a
concrete definition for chaos or what it means for a sys-
tem to be chaotic. I myself have been involved in more
than one very fueled debate on the subject. Having said
that, the most popular definition is one given by the afore
mentioned Henri Poincaré:

“It may happen that small differences in the initial condi-
tions produce very great ones in the final phenomena. A
small error in the former will produce an enormous error
in the latter. Prediction becomes impossible.”

This is to say that systems, equations, or algorithms
which produce large changes in output from small
changes in input are, by definition, chaotic. By now, you
are considering all the elements of your life that are cha-
otic - traffic to work, random computer crashes, mood
swings (someone else’s of course). True chaos, however,
requires a mathematical proof to determine its status as a

chaotic system.

All About Entropy
Part of that mathematical proof involves a concept known
as “entropy.” Entropy is the measure of the disorder or
randomness in a system. The more entropy a system has,
the more difficult it is to predict, or more to the point, to
backward calculate the initial input.

By way of example, consider the difference in entropy
between your PIN for your bank card and your password
on your computer. The automated bank machines typi-
cally only allow a four digit number. A four digit PIN has
10,000 possible values, while a seven character password
can have nearly 27 million possible values. The password,
however, may not actually have any more entropy. It’s not
the complexity of the result we are interested in when
talking about entropy, but the randomness that went into
generating the result.

In choosing a password, many users will choose a dic-
tionary word, or some modified version of an aspect of
their personal life. For example, I might chose a simple
combination of my favorite number, and the name of my
amazingly beautiful and fabulous wife. The result could
be something like:

fT (”Linda”,”5”) = ”L1nd405”

Given that I can only easily remember a few hundred per-
sonal facts and figures without some kind of reminder to
form such a password, a randomly assigned four digit
PIN with 10,000 options may actually have more entropy
than this weak password. That would depend greatly,
however, on the algorithm used to select my PIN.

Pseudo-Random Numbers
To get a random number out of a computer, you need to
simulate a random process. This is because computers are
deterministic machines. Given the same inputs under the
same conditions, they will always produce the same asso-
ciated outputs. The most popular way of simulating ran-
domness is to use an algorithm that is complex enough to
resist basic analysis. However, because these algorithms
are still deterministic, they only appear to be random, and
so the results are called “pseudo-random.”

One common source of pseudo- randomness is a numeri-
cal approximation of the value of π. Because one digit has
little discernible relationship to the next digit, the se-
quence appears random. There is no shortage of tech-
niques to get the values. One popular method is to use a

Applied Biomorphics in HYDRA

1/7

formula from John Machin, a professor of Astronomy at
Gresham College, London back in the early 1700’s:

π

4
= 4 arctan

1

5
− arctan

1

239

To approximate the arctangent, we can use the well-
known Taylor series:

arctan(x) = (x −

x
3

3
+

x
5

5
+

x
7

7
+

x
9

9
. . .) where (−1 < x < 1)

Obviously this is a hefty task for a even a powerful com-
puter. Even using more efficient approximations, it can
take an average PC several minutes to calculate 250,000
PINs. That doesn’t sound too bad for a bank, but keep in
mind that pseudo-random numbers form the basis for
cryptographic seeds used for algorithms that provide se-
curity in the form of ciphers (e.g. those used by your Web
browser for SSL), digital signatures, and more. So for a
system like a Web server that might need thousands of
such numbers a second, these calculations become a
processing bottleneck.

To make it worse, certain systems may have requirements
for even more complex algorithms. Some U.S. Federal
government systems, for example, must adhere to the
Federal Information Processing Standard (FIPS). FIPS
requires algorithms so computationally expensive that an
entire market of specialized co-processors sprung up to
offload the calculations from a system’s main processor.

True Randomness Can Be
False Security
Given the disadvantages intense computing requirements
and predictability of pseudo-random number generation,
many cryptographic applications have turned to sources
of true random data, such as radioactive noise from space
or small temperature variations inside microchips. This
solution, however, is plagued by two shortcomings:

1. Since the data is non-deterministic (meaning you can
not repeat a test and get the same results twice) you
can not prove the system’s entropy mathematically.
One run may be very random, and the next very pre-
dictable.

2. The source of entropy can often be manipulated.

Manipulation of the data or the source of entropy is often
the killing blow. Implementers have always looked, with-
out success, for a source of random data that could not be
manipulated - with some creative attempts.

An Interesting Anecdote: Lava Lamp vs. The World
In 1996 a rather creative individual discovered
that by coupling a digital imaging system to a
lava lamp, he could generate true random num-
bers. I took the concept to the next level, intro-
ducing a system later that year that used satel-
lite imaging of the clouds over the Western
Hemisphere, producing even more random
data, albeit not on clear days. My system
never caught on, probably because it’s not
nearly as funny.

Neither system provided a true solution. My
satellite data, for example, can be forged. Along
a similar vein, one distribution of Linux used the time
between the arrival of network packets as a source of
randomness. This solution was short-lived, as hackers
discovered they could manipulate the timing by flooding
the server with network traffic. Cyber-thieves calculated
values of the resulting “random” data, potentially allow-
ing them to steal network sessions and decipher encrypted
messages with ease.

Biomorphic Sets
We have seen that hardware pseudo-random number gen-
erators are often impractical or inadequate, and software
based solutions are often ineffective or computationally
expensive; so is there a solution? Enter biomorphic
mathematics.

In his book “Fractal Geometry of Nature” published in
1982, Benoit B. Mandelbrot suggests that the answer to
nature may lie in mathematics. Mandelbrot introduced a
simple equation:

z = z
2 + c

The equation, when combined with an iterative algorithm
(meaning an equation that depends on feedback into it-
self), produces the familiar fractal images now known as
the Mandlebrot set. Shortly before Mandlebrot’s discover-
ies, a Meteorologist by the name of Edward Lorenz began
using computers to predict the weather. Lorenz found that
very small truncation or rounding errors in his algorithms
produced large changes in the resulting predictions. This
led to the study of “strange” or chaotic attractors. A Lo-
renz system can be described as:

x1 = δ(x2 − x1)

x2 = rx1 − x2 − x1x3

x3 = x1x2 − bx3

Applied Biomorphics in HYDRA

2/7

Where δ is a constant. The system exhibits chaotic behav-
ior under the following conditions:

r ≤
δ(δ + b + 3)

δ − b − 1

Sentinel Security has now discovered that using these
techniques, combined with a simple algorithm, it is possi-
ble to model a biomorphic set that exhibits chaotic behav-
ior similar to biological growth models. In fact, as shown
below, when modeled in a three dimensional rendering
software package, the data resembles a blob of amor-
phous matter reminiscent of movement or growth models
associated with cellular automata.

Modeling Randomness
The exact parameters for modeling the specific biomor-
phic set used by HYDRA are a trade secret (not for rea-
sons of security, but rather to protect the intellectual prop-
erty). The modeling process, however, is fairly straight
forward.

The first step is to create a set using a simple geometric
progression of the form:

xnynzn = δ(xn−1yn−1zn−1 + i)

Where δ is a constant derived from a hash against system
parameters such as hardware and software serial numbers.
The algorithm to draw this set is similar to that used in
creating fractal images, where individual values are fed
back into the equation, and used in determining subse-
quent values.

Once the set is defined, the parameters are now used to
create a series of orbits around and within the set. To gen-
erate the random numbers, called “bodacions,” the algo-
rithm simply tracks the orbits, delivering a representation
of the x, y, and z coordinates in the form of a string of
characters. Much of the computation is front-loaded, and

subsequent requests for bodacions require very little
computation.

Bodacions have three very unique properties:
1. Bodacions are nearly impossible to guess or calculate

without the seed, orbit, and reference to position
along the orbit. That reference positions itself
changes chaotically. The smallest bodacion consists
of 320 bits of entropy, with larger hashes or combina-
tions of bodacions producing even more entropy.

2. Bodacions have almost no correlation to each other.
As shown below by the test results from various tests
against random or pseudo-random numbers, boda-
cions exhibit near true-randomness with determinis-
tic, provable results.

Test HW generated Bodacions Optimal Result

Entropy 0.999318 1.000000 1.000000

X2 0.01 50.00 25.00-75.00

Arithmetic
Mean

0.4846 0.5002 0.5000

Monte Carlo
Error

10.80% 0.13% 0.00%

Correlation
Coefficient

0.149488 0.000372 0.000000

3. Bodacions never repeat until all possible values are
delivered. In a typical set size of 2256, the system
could generate thirty-two bodacion per second and
never repeat a value for close to one thousand years.

An astute reader would point out that this characteris-
tic may reduce the security of bodacions. Think of a
group of people guessing a number between one and
ten. The first guess has a 1/10 chance of being cor-
rect. However, if you were privy to the first guess,
and you are the second guesser, your odds improve to
1/9. The odds improve in that way until after ten
guesses, you have a 1/1 chance (i.e. you know the
answer without guessing).

Since bodacions are shared among disparate subsys-
tems and connections, however, all parties are not
privy to all previous bodacions, reducing the odds of
a correct guess. Furthermore, a well-designed hash on
a bodacion can turn it into a random number with a
varying probability of repeating a value, while still
maintaining the chaotic characteristics.

Full details are available in the rather lengthy patent
number 20020064279, which may be found at
www.uspto.gov.

Applied Biomorphics in HYDRA

3/7

http://www.uspto.gov
http://www.uspto.gov

HYDRAs Applications
Since bodacions fulfill the entropy and computational
needs of a system like HYDRA, the HYDRA server
makes extensive use of the numbers throughout every
subsystem.

Diversity
The primary use for bodacions in HYDRA is to create
diversity at the process, subsystem, and device level. By
making each element different from another, HYDRA
enhances its security posture. HYDRA achieves the di-
versity by maximizing the divergences while making the
path of divergences difficult to predict using chaotic algo-
rithms.

To understand why this is so powerful, we again turn to
nature. In a behavior known as Evolutionary Psychology,
living organisms prefer to reproduce under the maximum
heterozygosity, or put another way, under situations
where two sets of compatible genes have the most differ-
ences. Opposites really do attract.

A famous case where this went horribly wrong is the
cheetah. Some time ago, all species of cheetah expect the
one we know today became extinct. The remaining spe-
cies was forced to inbreed due to their small numbers, and
this in turn has produced a situation where any one chee-
tah is nearly 99% the same as all other cheetah, compared
with less than 80% similarity among different humans.

The difficulty for cheetahs is that in the event of a deadly
virus targeting cheetahs, it is likely that the entire species
would be wiped out. Bear with me, but this is exactly the
problem behind the reason Internet worms and viruses
spread so quickly. With millions of computers running
identical software all connected to each other, a hacker
need only create one virus and it can spread to all similar
systems.

If those systems had diversity, the virus would be limited
to only those systems sharing common memory layouts
and configurations. HYDRA uses its ability to create di-
versity among its subsystems and sets of devices to pre-
vent this very situation. If a hacker with the resources to
crack a password or exploit any kind of vulnerability in
their HYDRA tries to use the same attack on another

HYDRA, it is extremely unlikely the attack would suc-
ceed.

TCP Initial Sequence Numbers
Another way HYDRA uses biomorphics is in the creation
of TCP Initial Sequence Numbers (ISNs). The ability to
predict TCP sequence numbers can allow a malicious user
to gain access to a system by masquerading as a legiti-
mate host. This untrusted system can receive all of the
system privileges that were afforded to the spoofed sys-
tem. A malicious user could gain access to files, data-
bases, and system information. The security of the system
and other remote systems could be placed in jeopardy.

To thwart this attack, HYDRA uses bodacions to create
TCP initial sequence numbers. HYDRA must create these
sequence numbers upon each new network connection,
which speaks to the low computational power required to
create a bodacion.

Web Content Verification
Malicious modification of Web content has been known
to result in tremendous damages. Hackers have success-
fully launched so-called “subversion of information” at-
tacks to modify financial records, change the cost of re-
tails items, and even to post false news stories from repu-
table sources regarding important political officers as
high as the President of the United States.

To prevent these attacks, HYDRA creates a signature on
each file, be it XML, SOAP, HTML or any other content
delivered via HTTP. The signature is based on a simple
chaotic function and tainted, or combined, with a boda-
cion. HYDRA’s Web server then checks the resulting sig-
nature against a recalculation before delivering any Web
content.

SSL/TLS
HYDRA also uses bodacions to secure Web content de-
livered over SSL/TLS. Web browsers (e.g. Safari,
Netscape, Internet Explorer) and Web servers (e.g.
HYDRA, Apache, IIS) use the Secure Sockets Layer (or
SSL) protocol to encrypt information in transit between
the browser and server. TLS makes some subtle, but im-
portant changes from SSL, and has a different name as
proof that eight people in one room have eight opinions
on what anything should be named.

Bodacions provide the source for cryptographic key mate-
rial for use in standard ciphers like Triple DES, AES, and
RC4, as illustrated below.

Applied Biomorphics in HYDRA

4/7

SHA-1

S
S
L
/
T

L
S

Bodacions

Non-FIPS

Mode

FIPS Mode

Note that HYDRA uses FIPS approved implementations
of Triple DES and SHA-1, so when operating in FIPS
mode, bodacions are first hashed to create a FIPS compli-
ant PRNG. Mathematical analysis shows the incorpora-
tion of SHA-1 to actually increase correlation (lower en-
tropy), however the impact on the resulting key material
is negligible.

HYDRA employs techniques similar to those used to cre-
ate key material and verifying content in dozens of addi-
tional subsystems and functions, including:
• General Random Number generation
• SSL Session ID’s
• TCP Initial Sequence Numbers
• One-way Password Hashing
• Disk Cache Verification
• Buffer Overrun Protection (Canary Values)
• IP ID’s
• X.509 Certificate Ciphering
• In-RAM Protection by Scramble Ciphers
• HTTP Virtual Server Lookups
• User and Group ID assignment
• Enabler Codes and Serial Number Generation

External Availability
Outside of HYDRA’s internal systems, remote applica-
tions may obtain bodacions via a simple protocol. Given
the unique properties of bodacions, applications may use
them for session ID’s, transaction numbers, and for count-
less other values that benefit from unique, difficult to
guess numbers or characters.

Database Performance Boost
Many database applications require unique values to al-
low for searching of a row set of data by a single column
value. For example, banks typically give each financial
transaction a unique ID. These ID’s should be difficult to
guess, so that unauthorized users can not easily locate
transactions.

In this case, the system must query the database for each
transaction ID before inserting that ID to avoid dupli-

cates. Database implementations almost always include a
feature called “unique constraint” that can perform this
operation for the application, albeit at significant cost.
Using bodacions (which are always unique) as ID’s al-
lows the developer to remove the unique constraint on the
column ID, which (as shown below) can dramatically
improve database performance.

SQL Database

Sorted Text File

SQL Database

w/o Constraint

log(t) secs

This graph shows the result of inserting ten million boda-
cions into first a Sybase database running on an IBM
UNIX server, next into a sorted flat file, and finally
Sybase again with the unique constraint turned off. The
uniqueness of bodacions, in this example, accelerates da-
tabase performance one hundred fold.

URL Protection
Information on the Internet is addressed primarily with a
Uniform Resource Locator, or URL, such as the one be-
low.

http://example.com/?item=Toy+Car&price=12.99

A URL consists of an access protocol (http), a domain
name (example.com) and many other optional components,
including parameters passed to application in the form
name=value.

Applications can use keyed bodacions (a bodacion made
from a string of data rather than the default set) to insure
a user has not modified privileged components of a URL.
For example, consider the above example URL that in-
cludes an item name (Toy Car) and a price ($12.99).

If the user modified this URL by changing the price, the
server would have no way of knowing this without look-
ing up the price again. To save that step, the system can
create a identifier made from the item number and price.

Each time the user returns to the site, the server could
recalculate the ID or look it up in a table. If the ID
matches what the one in the user’s URL, the elements
involved in making the ID have not been modified. In this
use, bodacions resemble an efficient hash or digital signa-
ture, depending on the details of their use.

Applied Biomorphics in HYDRA

5/7

http://some.url.com/?item=Toy+Car&price=12.99
http://some.url.com/?item=Toy+Car&price=12.99

http://example.com/?item=Toy+Car&price=12.99&session=1234

Toy Car

12.99

f(x)

1234

http://example.com/?item=Toy+Car&price=4.99&session=1234

Toy Car

4.99

f(x)

4321

No Match!

!

Session Protection
You might have noticed that the ID in the example URL
above was named “session”. This leads us to yet another
important application of bodacions: session ID’s.

The Internet operates primarily on a connectionless pro-
tocol. That is to say that, unlike a telephone conversation
where two parties are directly connected, downloading a
typical Web page requires multiple connections, and sub-
sequent pages require new connections. Web servers have
no way to associate multiple requests with a single user,
and so server applications often employ a unique session
ID which the two parties in the conversation must ex-
change upon each discrete connection.

Systems that need to create session ID’s face numerous,
significant challenges. These challenges can differ from
system to system, and vary from CPU usage requirements
in busy or slow systems to session locking to security is-
sues. The majority of systems, however, share two com-
mon issues: guaranteeing that session ID’s are unique,
and that session ID’s are secure from hackers guessing the
ID’s of other sessions.

Difficulty In Guaranteeing Uniqueness
For a session ID to be effective in linking discrete sec-
tions of a dialog in a connectionless system, the session
ID for each dialog must be unique among all dialogs. For
example, say a particular server assigns session ID’s
based on the time in seconds since the system began op-
eration. If two users accessed the system within the same
second, the server would think that these two users are
actually the same user.

Similarly, say a system uses the user’s last name and first
three digits of their social security number to assign a
customer ID. To this system, John Smith, born in Chi-
cago, IL and Jenny Smith, born in Schaumburg, IL, may

both receive the same customer ID of Smith321. The sys-
tem now has no way to distinguish Jenny from John.

Depending on the complexity of the system and its user
base, it can be difficult, if not impossible, to make a
unique key from user data elements alone.

The guessing of session ID’s by computer bandits is one
of the most prolific methods used to break into systems.
Session ID’s created by even complex algorithms are of-
ten simple to guess, and once a hacker has a session ID,
they can assume any identity. Hackers frequently look for
typical session generation techniques such as:

• Sequential Session Keys
Some sites use a sequence to create ID’s. For example,
a system may create sessions for different users of the
form A1, B2, C3...etc. All a hacker has to do is get one
valid session, say E5, and then wait to assume the iden-
tity of the next person who comes to the site, who’s ses-
sion will be F6.

• Random Session Numbers
Many systems use a pseudo-random number generator,
such as those built in to the microprocessor, to produce
session ID’s. As explained previously, these techniques
often provide very little randomness, and are easily ex-
ploited.

Bodacions, in contrast, are both difficult to guess or back-
calculate, and provide hackers near zero correlation (re-
call the numerical results given above).

Results Analysis
The most dramatic proof of bodacions as session ID’s or
random numbers versus other methods comes from dia-
grams produced by phase space analysis. Sorry, but it’s
time for just a little more math.

Since session ID’s (and indeed nearly all random data
used in HYDRA) are single dimensional in nature, an
algorithm to map these linear data into three dimensional
space is employed to create a more visually concise rep-
resentation. For the purposes of plotting bodacions, a
technique called the method of delays is used to recon-
struct a phase space. The method simply maps each suc-
cessive value of a series into x, y, and z coordinates.

x = f(g(tn−1), g(tn))

y = f(g(tn−2), g(tn−1))

z = f(g(tn−3), g(tn−2))

Applied Biomorphics in HYDRA

6/7

The following figure shows plots rendered using data
generated with the method of delays. The shape on the
left represents session ID’s generated from a Java applica-
tion that uses the default ID’s from the application server
connector. The shape on the right represents session ID’s
from the same application using bodacions.

The reader can clearly see that the so-called “random”
session ID’s from the Java application server (left) pro-
duce a clear pattern, while the bodacions (right) do not.

 HW-based RNG Bodacions

In Closing
Bodacions made from HYDRA’s implementation of cha-
otic, biomorphics sets have powerful applications in in-
ternal security, cryptography, and Web systems from the
application layer and down.

For more information about HYDRA, please visit Senti-
nel Security Corporation online at
http://www.sentinelsecurity.us. You can also send an
email directly to me via http://tinyurl.com/k4288 with
comments, suggestions, and questions, though please
keep in mind I may not be able to respond directly to
every message.

Further Reading
For further reading, I recommends the following:

• Mandlebrot, Benoit B. (1982). Fractal Geometry of Na-
ture. WH Freeman & Co. ISBN 0716711869

• Schroeder , Manfred (1995) Fractals, Chaos, Power
Laws: Minutes from an Infinite Paradise. W H Freeman
& Co. ISBN: 0716723573

• Sparrow, C.T. (1983) Lorenz Equations: Bifurcations,
Chaos, and Strange Attractors. Springer Verlag. ASIN:
0387907750

• Scambray, Joel and McClure, Stuart (2002) Hacking
Exposed Web Applications. McGraw-Hill Osborne Me-
dia. ISBN: 007222438X

• Uner, Eric. On Password Branching.
http://www.uner.com/passwordBranching.html

• Uner, Eric. Generating random numbers.
http://www.embedded.com/showArticle.jhtml;jsessioni
d=?articleID=20900500

My thanks to J. McKenzie Alexander, who created the
freeware LaTeX editor I used in creating the equations in
this and so many other papers, and to Mitchell Weiss at
http://members.optusnet.com.au/~mitchweiss/ for the use
of his lava lamp image.

Applied Biomorphics in HYDRA

7/7

